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Prediction of post‑delivery 
hemoglobin levels with machine 
learning algorithms
Sepehr Aghajanian 1,2, Kyana Jafarabady 1, Mohammad Abbasi 1, Fateme Mohammadifard 1, 
Mina Bakhshali Bakhtiari 3, Nasim Shokouhi 4, Soraya Saleh Gargari 3,7* & 
Mahmood Bakhtiyari 5,6*

Predicting postpartum hemorrhage (PPH) before delivery is crucial for enhancing patient outcomes, 
enabling timely transfer and implementation of prophylactic therapies. We attempted to utilize 
machine learning (ML) using basic pre-labor clinical data and laboratory measurements to predict 
postpartum Hemoglobin (Hb) in non-complicated singleton pregnancies. The local databases of two 
academic care centers on patient delivery were incorporated into the current study. Patients with 
preexisting coagulopathy, traumatic cases, and allogenic blood transfusion were excluded from all 
analyses. The association of pre-delivery variables with 24-h post-delivery hemoglobin level was 
evaluated using feature selection with Elastic Net regression and Random Forest algorithms. A suite 
of ML algorithms was employed to predict post-delivery Hb levels. Out of 2051 pregnant women, 1974 
were included in the final analysis. After data pre-processing and redundant variable removal, the top 
predictors selected via feature selection for predicting post-delivery Hb were parity (B: 0.09 [0.05–
0.12]), gestational age, pre-delivery hemoglobin (B:0.83 [0.80–0.85]) and fibrinogen levels (B:0.01 
[0.01–0.01]), and pre-labor platelet count (B*1000: 0.77 [0.30–1.23]). Among the trained algorithms, 
artificial neural network provided the most accurate model (Root mean squared error: 0.62), which 
was subsequently deployed as a web-based calculator: https://​predi​ctive​calcu​lators.​shiny​apps.​io/​
ANN-​HB. The current study shows that ML models could be utilized as accurate predictors of indirect 
measures of PPH and can be readily incorporated into healthcare systems. Further studies with 
heterogenous population-based samples may further improve the generalizability of these models.

Keywords  Postpartum hemorrhage, Machine learning, Multilayer perceptron, Support vector machine, 
Extreme gradient boosting, Artificial intelligence

Postpartum hemorrhage (PPH) is a critical global issue in obstetrics, representing the foremost cause of maternal 
morbidity and mortality worldwide, contributing to nearly one-third of deaths among pregnant and postpartum 
women. In the United States, PPH rates are on the rise, complicating almost 3% of deliveries1. Recent decades 
have witnessed advancements in PPH treatment, including compression sutures2,3, and changes in fibrinogen 
and blood transfusion strategies4,5. However, the limited availability of these advanced treatments in primary 
and secondary centers impedes widespread use, underscoring the pivotal role of timely intervention.

Notwithstanding the utilization of advanced therapeutic modalities, postpartum hemorrhage (PPH) con-
tinues to exert a pivotal influence on maternal mortality rates. While maternal death is relatively rare in the 
United States, blood transfusion following hemorrhage, a condition 50 times more prevalent than mortality, 
is the primary diagnosis linked to severe maternal morbidity6,7. The complexity of obstetric care settings, with 
varying levels of resources and expertise across different healthcare facilities, presents additional challenges in 
early identification and management of individuals at risk of requiring blood transfusion. In some cases, delayed 
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recognition of hemorrhage or insufficient access to timely interventions may exacerbate the need for blood 
transfusion and increase the risk of adverse maternal outcomes. This underscores the imperative need for the 
development of effective methodologies aimed at identifying high-risk patients. Predicting PPH before delivery 
is crucial for enhancing patient outcomes, enabling timely transfer to higher levels of care, advanced preparation, 
and implementation of prophylactic therapies8.

Despite historical studies on risk factors related to PPH, predicting the occurrence of PPH remains challeng-
ing. Risk factors such as abnormal placentation, placental abruption, severe preeclampsia, and intrauterine fetal 
demise have been identified9, but predicting a woman’s risk of PPH upon labor admission involves incorporat-
ing known risk factors and approximating the probability using a risk strata scheme. In addition, a significant 
portion of PPH cases involve patients lacking known risk factors, presenting a challenge for traditional models 
that often fall short in predicting such instances10,11.

Some studies have developed PPH prediction models based on hemoglobin (Hb) levels and blood transfu-
sion needs. Visual estimates of blood loss are deemed inaccurate12, and the gravimetric method for measuring 
blood loss has been validated in various studies13. Hb levels, especially concentrations below 80 g/L, appear to 
be a more accurate factor for evaluating and predicting PPH14.

Current risk-based stratification guidelines endorsed by The American College of Obstetricians and Gynecol-
ogists (ACOG) and California Maternal Quality Care Collaborative (CMQCC) utilize decision tree algorithms 
based on clinical consensus, expert opinion, and prior observational data15–17. However, a validated clinical 
prediction model suitable for deployment on labor and delivery units for PPH is currently lacking18. Traditional 
statistical methods historically formed the basis for risk prediction. However, the current literature indicates 
a shift towards embracing machine learning (ML) driven by advanced computer algorithms, particularly for 
individuals lacking conventional risk factors19. ML models efficiently automate the processing of non-additive 
relationships and incorporating complex interaction between factors that otherwise require specialized statistical 
expertise and time-consuming exploratory data analysis. This holds promising potential for accurately identifying 
women at the highest risk of PPH, potentially improving obstetric decision-making and clinical outcomes20–23. 
In this study, we attempted to construct an accurate machine-learning model using pre-labor clinical data and 
basic laboratory measurements to predict postpartum Hb levels in non-complicated singleton pregnancies.

Methods
This retrospective cohort study was conducted on pregnant women hospitalized in the maternity department of 
Mahdieh and Arash Hospitals in Tehran, Iran, from February 2016 to October 2019. This study included term 
pregnant women receiving standard of care and delivering within 24 h with a gestational age of more than 36 
weeks and a singleton pregnancy. Exclusion criteria were defined as follows: Patients with Hb decline second-
ary to trauma, those with hemoglobinopathies, recent smoking, pre-delivery infection, hereditary and acquired 
coagulopathy and dysregulated coagulation profile (International normalized ratio > 1.5, activated partial throm-
boplastin time > 35 s) and anticoagulant use, inflammatory and rheumatic diseases, congenital and ischemic 
heart diseases, familial and congenital liver disease and cirrhosis, ketoacidosis, sepsis, or whole blood and blood 
product transfusion throughout the study.

Baseline demographics, obstetrics, and laboratory data, including age, gestational age, BMI, gravidity, par-
ity, and abortion history, past medical history, past vaginal or cesarean delivery, labor cause, interval since last 
pregnancy, placenta location, perioperative blood product transfusion (as exclusion criteria), and baseline blood 
cell count and serum fibrinogen levels were obtained from patient medical records and paper-based question-
naires. Maternal and neonatal outcomes other than post-delivery maternal Hb levels were documented but not 
considered for the current study. Placental orientation was determined using ultrasound reports on sessions 
performed throughout the pregnancy.

Hb levels were routinely checked twice for each pregnant woman admitted to the study center; with the latter 
used as the main endpoint of the study. Two venous blood samples obtained in supine position were procured 
from each participant during distinct time intervals. The first sample was drawn within 24 h before the onset 
of labor to obtain serum and plasma measurements for complete blood count and laboratory measurements, 
while the second sample was collected 24 h post-delivery to evaluate Hb changes as a surrogate outcome for 
perioperative delivery and PPH. Samples were collected in vacutainer tubes containing 0.129 mol/L sodium 
citrate for coagulation assays, platelet count, fibrinogen, and other blood sample characteristics. Cell count was 
performed using automated hematology analyzers. Fibrinogen levels were assessed using the clot-based func-
tional assay (Clauss method) using standard clinical laboratory kits. The local reference range for fibrinogen 
was 250-450 mg/dL.

Informed written consent to include anonymized laboratory and clinical patient data was obtained from all 
participants meeting the inclusion criteria. The proposal for this research has been approved by the Ethics Com-
mittee of Infertility and Reproductive Health Research Center (IRHRC), Shahid Beheshti University of Medical 
Sciences (2014, SBMU, REC 299). Study procedures have been performed in accordance with the Declaration 
of Helsinki.

Statistical analysis
Percentages were calculated for categorical variables, whereas mean and standard deviation were calculated for 
continuous variables. The association between pre-labor variables in the dataset with significant hemodynamic 
changes throughout the labor was evaluated by comparing the distribution of the aforementioned characteristics 
in those with or without significant Hb decline (≥ 2.5 g/dL) using independent t-test for continuous variables and 
chi-square tests for categorical variables as appropriate. Considering the lack of clinical relevance for absolute 
decline in hemoglobin within the normal range, linear Hb values were prioritized as the outcome of choice. 
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To investigate the extent of association with post-delivery Hb levels, the input of ML models chosen using the 
feature selection approach described further below were incorporated in a multivariate linear regression model, 
alongside their crude estimates. All statistical analyses were carried out using Stata version 18.0. Alpha was set 
a priori at 0.05.

Data preparation and feature selection
The data was first split randomly into training and test datasets with an 8:2 ratio. To establish a consistent work-
flow and reproducible and comparable results, a preprocessing and feature selection pipeline was devised before 
evaluating the predictive accuracy of each included model. Preprocessing and data preparation were carried out 
by first removing variables with zero or near zero variances in the training dataset. Missing data was then imputed 
using bagged tree models for each predictor. Continuous data was scaled down between 0 and 1 to improve the 
predictive accuracy of dependent algorithms. Feature selection was performed using recursive feature selection 
based on random Forest and elastic net regularization algorithms with tenfold repeated (n = 3) cross-validation 
on training data by sequentially eliminating variables with least importance. The optimal model predictors for 
various combinations of independent variables were fitted to the remaining folds to assess the predictive accuracy 
of the selected model using the root mean squared error (RMSE) measure. The top five sets of predictors, chosen 
based on lower error rates, were then incorporated into the ML models.

Algorithm training and validation
To achieve optimal predictive accuracy, a comprehensive evaluation of various ML algorithms for regression 
output was conducted. The evaluated algorithms included Linear Regression (LR), Support Vector Machine with 
a linear kernel (SVM; implemented using the e1071 package), Multilayer Perceptron/Artificial Neural Networks 
with a single hidden layer employing resilient backpropagation and weight backtracking (ANN; implemented 
using the Neuralnet package). Additionally, Extreme Gradient Boosting with a linear base learner and regu-
larization (XGBM; implemented using the xgboost package and gblinear booster) and Regression Tree (RT; 
implemented using the rpart package) models were considered.

Hyperparameter tuning and initial model evaluation were performed on the training dataset using a fivefold 
cross-validation strategy. The optimal hyperparameter values for each model were determined through the grid 
search approach implemented in the Caret package in R to obtain lowest RMSE. After determining optimized 
hyperparameters for each algorithm, the models were retrained on the whole training dataset. The accuracy of 
each model was evaluated using mean absolute error, RMSE, RMSE-standard deviation ratio (RSR), percent bias 
(PBIAS), and R-squared (R2) on validation dataset.

To further enhance the precision of the final model, two meta-ensemble models were developed. These 
ensembles incorporated the predicted values from the top three performing predictive algorithms from the earlier 
steps into a Generalized Linear Model (GLM) and a Random Forest algorithm, respectively. The retraining of 
the model with these meta-ensembles followed the same process as described earlier. The model with the most 
accuracy was chosen to be utilized in the interactive web platform. Preprocessing and algorithm training was 
carried out in the R programming language (version 4.3.1) and Caret (Version 6.0) framework24,25.

Interactive platform
An AI interactive platform was created using the RShiny app development platform to provide the most accu-
rate estimation of post-delivery Hb levels. Users can input selected features, which were previously identified, 
and customize them as input parameters. The platform calculates predicted Hb values along with average 95% 
prediction intervals derived from the 2.5% and 97.5% percentiles of predictive errors observed in the test subset.

A subsequent one-tailed test will be conducted to examine whether predicted Hb value is comparable to 8g/dL 
cut point, if so, it is flagged as a high likelihood of requiring post-delivery red blood cell transfusion. Addition-
ally, if the user inputs values outside the range of the training dataset, the platform issues a cautionary warning 
along with the predicted values, ensuring users are aware of potential limitations in extrapolating predictions 
beyond the training dataset range. This approach enhances user awareness and promotes cautious interpretation 
of predictions, contributing to the platform’s overall reliability.

Results
After exclusion of 77 patients, a total of 1974 patient were included in the analyses. The average age (± SD) and 
BMI of women participating in the study was 27.76 ± 5.76 years and 25.13 ± 3.42 kg/m2, respectively. Patients were 
most likely to deliver past the 37 weeks’ gestation. Hypertension and gestational diabetes mellitus (GDM) were 
observed in 6.2 and 7.8%, of the participants (Table 1). Average post-delivery hemoglobin was 10.97 ± 1.25 g/dL. 
Data on delivery type was available on 1966 patient, based on which, 1075 women underwent natural vaginal 
delivery. Mean duration of labor was 5.09 ± 4.54 h in participants with natural vaginal delivery.

In crude analyses, age, gestational age, past delivery type, and hypertension were baseline characteristics 
associated with significant drop in Hb. The use of progesterone vaginal suppository was also linked with hb 
decline < 2.5 g/dL. Gravidity, parity, cesarean delivery, delivery indications, anterior placenta location, and pre-
delivery Hb and platelet were among obstetrics factors linked with 2.5 g/dL decline in secondary Hb (Table 2).

Variable selection and model training
The overall workflow of the current study is illustrated in Fig. 1. The initial phase of preprocessing involved the 
removal of variables with zero and non-zero variance towards the study outcome. The remaining variables to be 
assessed for subsequent stage were as follows: age, BMI, gravidity, parity, gestational age, placental orientation, 
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delivery indication, primary (pre-labor) Hb, primary platelet count, serum fibrinogen, GDM, hypertension, 
suppository progesterone use throughout the pregnancy.

Following comprehensive preprocessing and data splitting, the variables in the training dataset were further 
examined in the recursive feature elimination stage by evaluating their predictive accuracy, in conjunction with 
other variables, to determine the more accurate combination of predictors explaining the secondary Hb level 
variance. The top 5 predictors identified using the elastic net regression were as follows: primary Hb, serum 
fibrinogen, gestational age, primary platelet count, and parity. These selected predictors constitute the final set 
employed for algorithm training (Fig. 2). Interestingly, while cesarean section was associated with significant 
drop in Hb, the type of delivery was not correlated to linear changes in post-delivery Hb level.

Multivariate regression model revealed that increasing gestational age is associated with a marginal increase 
in secondary hemoglobin (− 0.31g/dL reduction in secondary Hb in 40 weeks compared 36 weeks gestation). 
Expectedly, pre-delivery laboratory values including primary Hb, platelet count, and serum fibrinogen were 
linked with higher secondary Hb. Moreover, increasing parity was associated with higher post-delivery Hb 
levels (Table 3).

Next, we constructed 5 ML models based on the selected variables and the algorithms visualized in Fig. 1. 
The optimal hyperparameters for SVM were epsilon-type regression with 0.25 constant of regularization term. 
Regression tree was fit with a complexity parameter of 0.003. XGBM was trained using 50 max boosting itera-
tions and 0.1 L2 regularization term on weights. No interaction constraints were imposed. The neural network 
used in this work was a simple fully-connected network with one hidden layer with three nodes and sigmoid 
activation function and a single output node with linear activation function. The ensemble models utilized the 
results of the top predictive algorithms in meta generalized linear and random forest models.

Validation and deployment
The accuracy of models is provided in detailed in Table 4. All models performed with acceptable predictive preci-
sion. Nevertheless, the use of ANN was associated with marginally improved results compared to other models 
(Fig. 3). Training time was the longest for XGBM followed by ANN, and SVM due to a greater number of tunable 
hyperparameters. Utilizing ensemble models did not result in a considerably improved fit to observed values 
compared to ANN and were not taken into consideration. The mean absolute error of the final model was 0.622 
g/dL, indicating high accuracy of the model in predicting post-delivery Hb level. The RSR for this model was 
close to 0.5, which provides a standardized measure that further confirms the high precision of the model. The 

Table 1.   Baseline characteristics and clinical history and presentation. Significant values are in bold.

History and admission data Total (n = 1990)

Outcome

p-valueHb decline < 2.5 g/dL (n = 1794) Hb decline ≥ 2.5 g/dL (n = 180)

Age 27.764 (5.755) 27.948 (5.735) 25.945 (5.652) < 0.001

BMI 25.126 (3.423) 25.121 (3.463) 25.171 (3.041) 0.858

Gestational age

 < 36 weeks 127 (6.6%) 124 (7.1%) 3 (1.7%) < 0.001

 36 weeks 67 (3.5%) 65 (3.7%) 2 (1.1%)

 37 weeks 219 (11.4%) 205 (11.7%) 14 (8.0%)

 38 weeks 525 (27.3%) 493 (28.2%) 32 (18.2%)

 39 weeks 518 (27.0%) 454 (26.0%) 64 (36.4%)

 40 weeks 377 (19.6%) 324 (18.6%) 53 (30.1%)

 Above 40 weeks 89 (4.6%) 81 (4.6%) 8 (4.5%)

Past natural vaginal delivery 747 (37.8%) 706 (39.4%) 41 (22.8%) < 0.001

Past cesarean section 467 (23.7%) 450 (25.1%) 17 (9.4%) < 0.001

Hypertension 123 (6.2%) 121 (6.7%) 2 (1.1%) 0.003

Migraine 5 (0.3%) 5 (0.3%) 0 (0.0%) 0.478

Seizure/epilepsy 6 (0.3%) 5 (0.3%) 1 (0.6%) 0.520

Impaired glucose tolerance 39 (2.0%) 36 (2.0%) 3 (1.7%) 0.755

Diabetes mellitus 6 (0.3%) 6 (0.3%) 0 (0.0%) 0.437

Gestational diabetes mellitus 155 (7.9%) 144 (8.0%) 11 (6.1%) 0.362

Progesterone vaginal suppository use 562 (28.5%) 529 (29.5%) 33 (18.3%) 0.002

Asthma 9 (0.5%) 9 (0.5%) 0 (0.0%) 0.341

Anemia 25 (1.3%) 23 (1.3%) 2 (1.1%) 0.845

Urinary tract infection within preg-
nancy 40 (2.0%) 39 (2.2%) 1 (0.6%) 0.142

Nephrolithiasis 10 (0.5%) 10 (0.6%) 0 (0.0%) 0.315

Hepatitis B 5 (0.3%) 5 (0.3%) 0 (0.0%) 0.478

Tuberculosis 1 (0.1%) 1 (0.1%) 0 (0.0%) 0.751

Pruritus 9 (0.5%) 9 (0.5%) 0 (0.0%) 0.341



5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:13953  | https://doi.org/10.1038/s41598-024-64278-z

www.nature.com/scientificreports/

model was deployed in https://​predi​ctive​calcu​lators.​shiny​apps.​io/​ANN-​HB/ as a standalone interactive webpage, 
which calculates the predicted value along with the 95% prediction intervals as the measure of model uncertainty.

Discussion
This investigation was undertaken utilizing an extensive dataset procured from two tertiary care hospitals with 
the aim of constructing a predictive model for postpartum hemoglobin (Hb) levels subsequent to childbirth. 
The dataset originally encompassed a multitude of variables, acquired both prenatally and postnatally, in the 
context of both normal vaginal delivery (NVD) and cesarean section (CS). All variables assessed either prior to 
or early within labor were examined for predictive value using both a statistical and a semi-automated workflow 
displayed throughout the work.

Consistent with previous studies26,27, there was a positive correlation between primary and secondary Hb val-
ues, as well as serum fibrinogen levels and platelet count with secondary Hb. Fibrinogen plays a crucial role in the 
coagulation cascade and serves as the central element in clot formation. During pregnancy, fibrinogen levels expe-
rience a gradual rise of up to 50%, correlating with advancing gestational age and reaching their peak in the third 
trimester. This elevation in fibrinogen levels is a fundamental aspect of the coagulation system’s adaptive response, 
strategically aimed at mitigating the potential risks of adverse hemorrhagic outcomes during pregnancy28. Since 
evaluating fibrinogen level is characterized by expeditiousness, simplicity, and cost-effectiveness, it can be easily 

Table 2.   The association between Pre-labor obstetrics data and hemoglobin drop greater than 2.5g/dL. 
Significant values are in bold.

Pre-labor obstetrics data Total (n = 1990)

Outcome

p-valueHb decline < 2.5 g/dL (n = 1807) Hb decline ≥ 2.5 g/dL (n = 183)

Gravidity

 1 745 (37.8%) 636 (35.5%) 109 (60.9%) < 0.001

 2 682 (34.6%) 638 (35.6%) 44 (24.6%)

 3 360 (18.3%) 342 (19.1%) 18 (10.1%)

 4 128 (6.5%) 121 (6.8%) 7 (3.9%)

 5 33 (1.7%) 32 (1.8%) 1 (0.6%)

 6 13 (0.7%) 13 (0.7%) 0

 ≥ 7 10 (0.5%) 10 (0.6%) 0

Parity

 0 866 (43.9%) 738 (41.2%) 128 (71.1%) < 0.001

 1 738 (37.4%) 703 (39.2%) 35 (19.4%)

 2 298 (15.1%) 284 (15.8%) 14 (7.8%)

 3 50 (2.5%) 48 (2.7%) 2 (1.1%)

 4 10 (0.5%) 9 (0.5%) 1 (0.6%)

 ≥ 5 10 (0.5%) 10 (0.5%) 0

Placenta orientation

 Anterior 1,001 (50.7%) 895 (49.9%) 106 (58.9%) 0.021

 Posterior 568 (28.8%) 526 (29.3%) 42 (23.3%) 0.091

 Fundal 284 (14.4%) 260 (14.5%) 24 (13.3%) 0.673

 Lateral 136 (6.9%) 122 (6.8%) 14 (7.8%) 0.622

Placenta previa 2 (0.1%) 2(0.1%) 0 0.648

Delivery indication

 Labor pain 1400 (70.9%) 1277 (71.2%) 123 (68.3%) 0.422

 Rupture of membrane 469 (23.8%) 413 (23.0%) 56 (31.1%) 0.015

 Reduced fetal movement 143 (7.2%) 129 (7.2%) 14 (7.8%) 0.772

 Post due date 52 (2.6%) 50 (2.8%) 2 (1.1%) 0.181

 Pregnancy-induced hypertension 8 (0.4%) 8 (0.4%) 0 0.369

 Repeated Cesarean section 355 (18.0%) 345 (19.2%) 10 (5.6%) < 0.001

 Intrauterine growth restriction 15 (0.8%) 15 (0.8%) 0 0.218

 Fetal demise 161 (8.2%) 154 (8.58%) 7 (3.9%) 0.028

Pre-labor hemoglobin level (g/dL) 12.12 (1.26) 12.04 (1.21) 13.09 (1.26) < 0.001

Pre-labor platelet count (per 1000μL) 219.88 (63.35) 219.81 (63.11) 220.66 (65.97) 0.887

Serum fibrinogen (mg/dL) 268.31 (55.79) 274.78 (52.34) 203.86 (47.60)  < 0.001

Delivery type

 Natural vaginal delivery 1,066 (54.2%) 987 (55.3%) 79 (43.9%) 0.004

 Cesarean section 900 (45.8%) 799 (44.7%) 101 (56.1%)

https://predictivecalculators.shinyapps.io/ANN-HB/
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used before labor for predicting hematological outcomes after delivery. Anticipating transfusion needs based on 
pre-labor fibrinogen levels enables healthcare facilities to optimize resource allocation. This includes ensuring 
the availability of blood products and skilled medical staff, leading to more efficient and cost-effective maternal 
healthcare delivery.

Among variables associated with both linear and categorical hemoglobin outcome, gestational age emerged 
as a significant variable exhibiting a pronounced association with the decline in hemoglobin levels post-delivery. 
Consistent with our findings, analogous results have been reported in other studies, collectively suggesting that 
patients with a later gestational age at delivery are at an elevated risk of postpartum hemorrhage29. The association 
between gravidity and parity and a diminished likelihood of hemoglobin decline following delivery is also not 
unexpected considering the elevated risk of PPH among nulliparous women30. Notably, our investigation also 

Figure 1.   Flow diagram of included participants and overall workflow of the study.
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demonstrated that the utilization of vaginal suppositories containing Progesterone is associated with a reduction 
in postpartum hemorrhage. This phenomenon is hypothesized to be attributed to the modulatory influence of 
progesterone on myometrial contractility, resulting in enhanced uterine contraction and subsequently dimin-
ished postpartum bleeding31.

Given the substantial global impact of PPH on maternal mortality, there is a pivotal need to delineate a pre-
dictive variable for hemorrhage and associated volume loss32,33. A universally accepted definition of postpartum 
hemorrhage (PPH) remains elusive, as multiple definitions are presently employed globally34,35. Although com-
mon definitions facilitate cross-country comparisons of PPH incidence rates, the clinical significance of quan-
tified blood loss in otherwise robust and healthy parturient women is subject to skepticism32,36. Assessing the 
prevalence of clinically severe hemorrhage may prove more pertinent, taking into account the rate, total volume 

Figure 2.   Feature selection and variable importance investigated using Random Forest and Elastic Net 
Regression. The top 5 predictors identified in the Elastic Net model were chosen as input for all subsequent 
machine learning models.

Table 3.   Multivariate model demonstrating the top variables associated with post-delivery hemoglobin 
identified using elastic net regression feature selection. # Multiple linear regression model; variable selection 
was carried out by including the pre-labor predictors used for ML models. *Simple linear regression model. 
Significant and near-significant values are highlighted in bold and bolditalics.

Predictors

Multivariate model Crude association*

B (95% CI) p-value Variance inflation factor B (95% CI) p-value

Parity 0.09 (0.05 to 0.12)  < 0.001 1.03 0.06 (0.00–0.12) 0.054

Gestational age at labor (vs. 36 weeks) Ref – – Ref –

Below 36 weeks 0.05 (− 0.14 to 0.25) 0.589 2.76 − 0.29 (− 0.66 to 0.07) 0.116

37 weeks − 0.17 (0.35 to 0.01) 0.065 3.89 − 0.36 (− 0.49 to 0.15) 0.034

38 weeks − 0.16 (− 0.33 to 0.01) 0.068 6.61 − 0.30 (− 0.62 to 0.01) 0.059

39 weeks − 0.25 (− 0.42 to − 0.08) 0.003 6.59 − 0.27 (− 0.59 to 0.04) 0.089

40 weeks − 0.31 (− 0.48 to − 0.13) 0.001 5.51 − 0.17 (− 0.49 to 0.15) 0.306

Above 40 weeks − 0.23 (− 0.44 to − 0.02) 0.031 2.27 − 0.35 (− 0.75 to 0.04) 0.076

Pre-labor hemoglobin level 0.83 (0.80 to 0.85) < 0.001 1.10 0.71 (0.67 to 0.74)  < 0.001

Pre-labor platelet count (per 1000/μL) 0.77 (0.30 to 1.23) 0.001 1.01 1.93 (1.07 to 2.80)  < 0.001

Serum fibrinogen (per 100 mg/dL) 1.05 (1.00 to 1.11) < 0.001 1.07 0.62 (0.52 to 0.71)  < 0.001

Table 4.   Performance of the algorithms and models used for predicting post-delivery hemoglobin level. Bold 
values highlight the most optimal model based on the performance measure of the corresponding row. 

Metrics

Algorithms Stack models

LR RT SVM XGBM ANN GLM RF

MAE 0.4575 0.5179 0.4491 0.4747 0.4502 0.4508 0.4645

RMSE 0.6312 0.7105 0.6349 0.6487 0.6217 0.6222 0.6407

PBIAS − 0.0646 − 0.6026 − 0.4554 0.0963 − 0.0775 − 0.0767 − 0.0932

R2 0.7521 0.6860 0.7466 0.7382 0.7596 0.7592 0.7446

RSR 0.5133 0.5777 0.5162 0.5275 0.5055 0.5059 0.5210
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of blood loss, need of transfusion, post-delivery Hb and the efficacy of therapeutic interventions37. The gravity 
of PPH is contingent upon the maternal response to treatment, the pace and magnitude of blood loss, and the 
overall health of the patient, including pre-existing conditions which renders individuals more susceptible to 
decompensation in the presence of peripartum bleeding. Predicting the post-delivery Hb would play an essential 
role in clinical management of postpartum hemorrhage, volume loss and transfusion need. ML algorithms bring 
unprecedented analytical capabilities to the realm of maternal healthcare that may be specifically trained for this 
task. By processing vast datasets encompassing diverse patient profiles, ML models can discern intricate patterns 
and relationships within the data and may achieve higher predictive accuracy than experts within the same field.

Conclusion
This work demonstrated that both ML and statistical models demonstrate a high level of accuracy in predict-
ing Hb level within 24 h post-delivery based on data accessible upon admission for labor including fibrinogen 
level. This study employs an analytical approach that has not been extensively explored or applied in obstetrics. 
However, it is crucial to note that this “proof of concept” must undergo prospective testing in larger population-
based studies with heterogeneous sample sizes to validate its effectiveness. Despite the aforementioned factors, 
this study was limited by the omission of cases with allogenic blood product transfusion and other laboratory 
coagulation factors which could have given a more comprehensive profile and potentially improved the predictive 
accuracy of the model. While, the removal of non-complicated cases, traumatic cases, coagulopathies, and rare 
occurrences of factors strongly associated with intrapartum blood loss and PPH such as placental abruption in 
this study provided a more uniform distribution of participants, this choice may limit the generalizability of the 
results and preclude the predictive capability of the models for a general and geographically-distinct population. 
Overall, the results underscore the potential of machine learning methodologies to enhance clinical prediction 
and optimizing patient outcomes in the field of obstetrics.

Figure 3.   Predictive accuracy and error of all evaluated algorithms. Artificial neural network/Multilayer 
perceptron had a marginal improvement over other included models. Expectedly, predictive accuracy was lower 
within lower and upper bounds of post-delivery hemoglobin.
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Data availability
The dataset analyzed during the current study available from the corresponding author on reasonable request 
and with permission of the research and ethics committee of the study centers.
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